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Abstract—Modeling of HVAC components and energy flows
for energy prediction purposes can be computationally expensive
in large commercial buildings. More recently, the increased
availability of building operational data has made it possible
to develop data-driven methods for predicting and reducing
energy use for these buildings. In this paper, we present such
an approach, where we combine unsupervised and supervised
learning algorithms to develop a robust method for energy
reduction for large buildings operating under different environ-
mental conditions. We compare our method against other energy
prediction models that have been discussed in the literature using
(1) a benchmark data set and (2) a real data set obtained from
a building on the Vanderbilt University campus. A Stochastic
Gradient Descent method is then applied to tune the controlled
variable i.e., the AHU discharge temperature set point so that
energy consumption is “minimized”.

Index Terms—Data driven modeling, HVAC, Hierarchical
Clustering, AdaBoost, Random Forests, Stochastic Gradient De-
scent.

I. INTRODUCTION

Large commercial buildings typically consume large
amounts of energy [1] and the HVAC systems of the buildings
are usually the most significant contributors to the energy
footprint of these buildings. Given the recent moves toward
sustainability and reduced fossil fuel use, researchers have
begun to study the key components in HVAC energy con-
sumption and to develop methods for energy use reduction [2],
[3]. In our research, we have been applying machine learning
algorithms to develop data-driven analytic models of energy
consumption, and then apply optimization methods to these
models to reduce the energy use of the building for different
environmental conditions.

Two primary approaches have been developed for modeling
energy consumption in buildings. Model-based approaches
rely on the laws of physics and building configurations to
develop energy and mass balance equations that model the
energy consumption. We review some of these commonly
used approaches in Section II-A. However, building accurate
physics based models is computationally expensive and time-
consuming. As an alternative, as more data on building energy
consumption profiles have become available, researchers and
practitioners have switched to alternate forms of modeling that
are derived from data-driven and machine learning methods.

Popular machine learning methods include Support Vector Ma-
chines, Boosting methods, and auto-regressive neural network
models. Data-driven methods are reviewed in section II-B.

In this paper, we develop a new data driven technique for
modeling energy consumption in large buildings, and then ap-
ply a stochastic optimization method to reduce the energy foot-
print of the building under different environmental conditions.
We combine unsupervised learning methods to characterize
the different environmental conditions under which buildings
operate, and then develop data-driven models of energy con-
sumption for each set of environmental conditions. We then
apply optimization methods to the derived analytic models to
find operating points that reduce the energy consumption of
the building. We demonstrate the effectiveness of our approach
by comparing our model’s prediction performance with other
methods that have been discussed in the literature using a
benchmark building energy dataset. As a second experiment,
we apply our approach to a building for which we acquired
energy consumption data from the Vanderbilt Plant Operations.

The rest of the paper is organized as follows. Section II
reviews the existing state of the art in energy prediction
and optimization methods. In Section III, we describe the
configuration of the building that we have used for our
experimental studies. Section IV describes the work flow for
energy optimization, and the components of the work flow.
Section V discusses the results of our experimental studies,
and a comparison of our results to some of the other methods
discussed in the literature. Finally, Section VI presents the
summary and conclusions of the paper.

II. LITERATURE REVIEW

Parameterized analytic models of building energy con-
sumption can be used to “optimize” energy consumption by
tweaking control parameter settings that reduce energy use.
Typically, the inputs associated with such models include
environmental conditions and the thermostat settings in dif-
ferent locations of the building. The output variable is the
building energy consumption, and control parameters include
the settings for air handling, heating and cooling units of the
building. Once we have an analytic model of the system, the
control variables can be adjusted during operation to optimize
energy consumption. There are two common approaches to



building models of a system: (1) Physics Based and (2)
Data Driven. Representative approaches in either category are
discussed below.

A. Physics Based Modeling for Optimizing Energy Consump-
tion

These methods apply physical laws of thermodynamics,
heat and mass flow to model building energy consumption.
Data collected from the system may be used to estimate the
system parameter values in the model. Control algorithms
are then employed to dynamically set values to some of the
system parameters and reduce energy consumption without
sacrificing comfort levels in the building. In our case, we
might have a model where energy use is modeled using
thermodynamic equations. We use an optimization algorithm
to tune the discharge temperature variable such that the energy
consumption for the process is reduced.

Ghiaus et al. [4] used a scaled laboratory model of an HVAC
system to model the interactions between different subsystems
using a set of thermodynamic and mass balance equations.
They used a controlled static relay to feed power to the system
and noted the difference in temperature between the input
and output air of the coils inside the model. Using this data,
they estimated the parameters of the thermodynamic equations.
Once these model parameters were estimated, the temperature
set points were tuned for the current set of environmental
conditions and temperature set points using an optimization
algorithm to minimize the energy consumption. They validated
their approach under a controlled setup, but inferring param-
eters of a real dynamic model with uncertainties, noise and
disturbances in the measurements can be very difficult.

Another common approach for energy optimization in build-
ings is to use energy simulation software like EnergyPlus,
DOE-2 and TRNSYS [5], [6]. These software packages can
be integrated with sensor data from different locations of
the building to continuously track building loads and develop
a virtual model of the building energy consumption. These
methods use preset schedules to optimize electrical loads
within the building. However, [7] shows that these method
may incur more energy cost during peak energy consumption
hours.

Huang et al. [8] have used a R-C network modeling
approach to capture the thermodynamic interactions between
different HVAC components of an airport terminal. Model
Predictive Control is used to minimize the energy consumption
over a finite time horizon by varying the temperature setting
within a pre-specified range. They achieved a theoretical 5-
18% energy savings using this approach.

Our project involves HVAC systems that use a combina-
tion of Air Handling Units(AHU), Variable Refrigerant Flow
(VRF) systems, Steam based Heaters and a network of air,
chilled water and steam flow systems. To adapt a model-
based approach, we have to construct first principles models
of the individual components and compose them into a an
integrated model of energy flows and consumption in the
building. Constructing a system-level model that can simulate

the system energy flows and consumption in a sufficiently
accurate manner can be a difficult and resource intensive task.
The complexities and costs in building sufficiently accurate
models for large, complex buildings, naturally motivates data
driven models that are reviewed next.

B. Data Driven Approach for optimizing Energy Consumption

Since building accurate models of energy flow in buildings
can be computationally expensive, an alternative approach
may be to derive data-driven models of energy flow and
consumption in a building. Progress in machine learning
algorithms have made it easier to construct models that make
accurate predictions of building dynamics and energy use.
Given the model, control variables in the model can be tuned
using methods, such as gradient descent, and evolutionary
optimization algorithms (e.g., Genetic Algorithm, Differential
Evolution) to optimize the outcome variables of interest.

Artificial Neural Nets (ANNs) and Support Vector Regres-
sion have been successfully employed to model heating and
cooling loads and thermal conditions inside the buildings.
Researchers (e.g., [9]–[14]) use weather data like outdoor dry
bulb temperature, relative humidity, wind speed, direct and
diffuse solar radiation and indoor temperature settings as input
and cooling, heating and electrical load data as the output to
train these models. The control variables in the model, viz.,
the indoor temperature set points are then tuned with pre-
specified constraints to optimize energy consumption. Novel
approaches, such as [15] use Kernel Ridge regression with
a K-Nearest Neighbor (K-NN) implementation for efficient
prediction of energy consumption in buildings. [16] used
Regression Trees for the same purpose.

Data-driven approaches provide a promising alternative to
physics-based energy flow modeling, especially when com-
plexity of the system precludes developing sufficiently accu-
rate models. Data-driven models are often black box models
that employ abstractions to accommodate complex interactions
and enhance the practical utility of the model for prediction.
But the models may not have a direct physical interpretation.
It should also be kept in mind that such models are susceptible
to sample bias. Therefore, it is important to ensure the data
represents a sufficiently large spectrum of operating scenarios.

III. DESCRIPTION OF THE SYSTEM

Large buildings typically have a central Building Automa-
tion System (BAS) linked to distributed HVAC systems for
climate control of a number of interconnected spaces to
maintain occupant comfort. The BAS is used by a building
personnel to monitor the building conditions and perform
supervisory control.

The Alumni Hall at Vanderbilt University is a three-storied
building with a collection of small office spaces, large halls,
which also serve as meeting spaces, classrooms, cafeteria
on the first floor and a gym in the basement. Since it is
an old building, its HVAC system has been retrofitted with
Variable Refrigerant Flow (VRF) Units. Figure 1 shows the
main components of the HVAC system: the Air Handling unit



Fig. 1. Schematic of the Energy Flow in the HVAC system at the Alumni Hall at Vanderbilt University

(AHU), the steam generation unit, and the VRF subsystems.
The piping through which the chilled water flows and connects
to the different parts of the system are also shown.

The Air Handling Unit within the building is only used to
discharge neutral air at 50% relative humidity and a pre-set
temperature of 68oF. The subsystems in the AHU: the cooling,
preheat and reheat coils are its main energy consumers. They
are regulated by a control set point to humidify and dehumidify
the air. The primary heating and cooling energy source in the
building is the chilled water, which is supplied by a central
plant on the Vanderbilt campus. The hot water, provided by
a steam generator, is used to warm up and add energy to the
chilled water on cold days using a heat exchanger. Both units
are placed inside the building. The current reset schedule for
the HVAC operates based only on the ambient humidity, which
is not implemented in an energy efficient manner, according to
the plant operators. The air has to be cooled down to remove
moisture and reheated to a certain level before being released
inside the building. When the AHU releases dehumidified air
at a higher temperature but regions in the building need to cool
them down to lower temperatures, it results in unnecessary
energy expenditure. This inefficiency in the system motivated
us to look for methods that provide more energy efficient
control in large buildings.

Our approach is designed to adjust the discharge temper-
ature set point of the dehumidified air taking into account
the environmental conditions (outside temperature, outside
humidity, and solar irradiance). To relate to the model that
we want to develop, the environmental variables are the input
data to our model, and the chilled water and hot water energy

consumption are considered as the output or outcome variable
that we wish to minimize, and the AHU discharge temperature
is the control variable that we will manipulate to achieve the
”minimum” energy use.

IV. PROPOSED APPROACH

Our goal in this work was to adopt a data-driven approach
to build a parameterized predictive model of the energy con-
sumption of the building as a function of the AHU temperature
set point and environmental variables, which are the input
variables. More formally, if the building Energy consumption
E can be represented as a function f(.) of the set of inputs
that include X, the primary environmental conditions that
affect building energy consumption, and θ), a set of control
variables of the system. We develop an optimization schedule
to perturb the control variables θ under some constraints to get
an optimum energy consumption. In other words, we solve the
following two problems: Find the function f(.) which predicts
the Energy Consumption E according to the relation

E = f(X, θ)

and then find
θ = argminθf(X, θ)

In our work, X is three-dimensional, and made up of the
environmental variables: (1) the Outside Air temperature, (2)
the Outside Air Relative Humidity and (3) the Solar Insolation.
The control variable, the set point θ, is the temperature set
point of the Air Handling Unit that will be manipulated to
”minimize” energy consumption.



Fig. 2. Schematic of the proposed Framework

Use of ensemble learning methods for energy prediction
has not been explored much in the past, but we believe it
is useful because variation of energy use in buildings can
often be difficult to learn using one regression function. [16]
applies a popular ensemble method, Random Forests, a well-
known adaptive bagging technique for energy prediction. We
propose to use AdaBoost [17] employing Regression Trees
as base estimators. Even then a single model cannot be
sufficient to describe the system because buildings operate in
different modes during different times of the day, and across
the different seasons. To accommodate these variations, we
applied a hierarchical clustering algorithm [18] to identify the
different environmental conditions under which the building
operated.

We used the three environmental features (outside air tem-
perature, relative humidity, and the solar insolence) to define
the data points (total energy consumption at 10 minute inter-
vals) for clustering. Before running the clustering algorithm,
we scaled the features to prevent biased cluster formation
since solar insolation values typically have higher variance
compared to other environmental variables. We considered
each cluster to represent different environmental conditions
that would entail a different mode of operation for the building.
As a result, the energy cost function, f , was derived separately
for each cluster of environmental data using the AdaBoost
regression technique. We also built Support Vector regression
model and compared the results produced by the two methods.

For the optimization step, we assumed the regression

model as the cost function and the current weather con-
ditions and the current discharge temperature are used for
initializing a Stochastic Gradient Descent(SGD) optimization
algorithm [19]. The discharge temperature of the AHU is the
primary variable that is adjusted to find a better operating
condition while the environmental variables are constrained to
vary by small amounts to enable the SGD to explore the search
space. Finally, this new discharge temperature was passed
to the plant controller of the AHU system. The controller
could then automatically adjust the heating and cooling valves
of the system to moderate the discharge air temperature.The
schematic of the entire process is shown in Figure 2. Details
of the algorithms in relation to the application are presented
next.

A. Hierarchical Clustering

We employed an agglomerative approach to building clus-
ters. In this paper, we use the Euclidean metric and the
Ward minimum variance method for minimizing intra cluster
variance. The Hierarchical Clustering approach has an advan-
tage over other traditional algorithms, like K-Means because
additional visual inspection of the generated dendogram can
be applied as a heuristic for deciding on the number of clusters
to be formed. Once the number of clusters was established, we
computed the cluster center for each cluster. It should be noted
here that the clusters indicated significant information about
the environmental conditions, which is later explained in Table
II. During the test phase, a new data point was first assigned
to a cluster based on proximity to the cluster center, and then
the optimal discharge temperature was computed using the
function F associated with that cluster.

B. Support Vector Regression

One of the techniques we used to learn the energy con-
sumption was the Support Vector Regression [20]. The idea
is to map a non linear regression function in the input
space represented by the 4 dimensional data X, θ to a high
dimensional space, where it is represented by the hyperplane
that minimizes the size of an ε tube surrounding the plane that
contains all N observations in the training data. Observations
lying beyond the tube by an amount Ei (or E∗i if it lies
on the other side of the hyperplane) for each observation i
are penalized linearly by the constant λ. If ω denotes the
hyperplane and b is the intercept, SVR solves the following
convex optimization problem given by

minω
||ω||2

2
+
λ
∑i=N
i=1 (Ei + E∗i )

N
(1)

subject to the following constraints,

yi − ω.φ(X, θi)− b ≤ ε+ Ei i = 1, 2 . . . N (2)

ω.φ(X, θi) + b− yi ≤ ε+ E∗i i = 1, 2 . . . N (3)

E∗i ≥ 0 i = 1, 2 . . . N (4)

For our problem we used the energy values to be predicted
as the set of yi’s. Through grid search, the regularization
parameter was found to be 1.5 for almost every cluster.



C. Adaptive Boosting

AdaBoost [17] is a training methodology where a sequence
of T learning machines (like regression trees) are trained on
samples of the data in a step by step manner over T iterations.
In each iteration j, we created the training set for the jth

regression tree using N1 samples selected with replacement
from the training set (X, θ). It should be kept in mind that
(X, θ) denotes the data corresponding to a specific cluster
that was derived earlier. Any instance i has a probability of
selection given by pi = wi∑

i wi
, where the training instances

are weighted according to whether the regression algorithm
can predict it with sufficient accuracy in the previous iteration.
wji is the weight we assigned to the ith instance. This helps
us focus more on (X, θ)s that were difficult to learn from the
actual data. We denote the jth regression tree by ŷj(X, θ).
Next, we evaluated the prediction error on each data point of
the sample denoted by Li using ŷj(X, θ).

Li = Loss

[
|ŷji (X, θ)i − yi|

]
(5)

The average loss for all the instances generated by the regres-
sion tree ŷj(X) is given by the following expectation measure

L =

N1∑
i=1

Li ∗ pi (6)

The average loss helps us generate a measure of confidence for
the jth regression function ŷj(X, θ). We have a mathematical
measure for our confidence denoted by βj ,

βj =
L

1− L
(7)

Thus βj helps our model decide how much importance to
attach to the jth regression model when predicting a test
instance. Then at the end of iteration j, wji is updated using

wj+1
i ← wji ∗ βj ∗ (1− Li) ∀i = 1 . . . N1 (8)

Thus we update the importance weights of the samples se-
lected at the jth iteration depending on the amount of error. It
becomes evident that wi is assigned lower values if instance i
is predicted without much loss. We use the simple linear loss
function scaled to the interval [0, 1] by dividing each Li by the
maxi Li. This was done to ensure βj is positive in equation
7.
In order to predict the yi for a test instance (X, θ)i, it is passed
to all the T regression functions and the cumulative prediction
is made according to a weighted median [17] approach. The
predictions of all the regression functions are arranged in
increasing order of magnitude and the βjs associated with
them are also rearranged. Then starting from the index with
smallest ŷji , the cumulative sum logβj is calculated until it is

greater than
∑T

j=1 logβj

2 . The index j for which this is satisfied
is taken to be the ensemble prediction. Naturally, if all the
regression functions have equal values for β, this would simply
indicate a median prediction.

D. Stochastic Gradient Descent

Stochastic Gradient Descent is an approximation to the
Gradient Descent optimization algorithm used to obtain the
optimum of a cost function. We use the regression model
F ((X, θ)i) (using SVR or AdaBoost), the current set of
environmental variables and temperature set points included
in the vector (X, θ)i and iteratively converge to a better
temperature set point using a search method. Mathematically
SGD updates the parameters sequentially using the following
equation,

θit = θit−1 − α∇θF ((X, θ)i), (9)

where α is the learning rate for the problem and ∇θ indicates
the gradient with respect to the control variable θ. This formula
can be applied when the cost function is pseudo convex. Since
we trained the classifier over a large dataset, using SGD proved
more useful than batch gradient descent since the later makes
a pass over all the data before making a single step towards
an optimum. Moreover, SGD can converge very fast.

V. RESULTS

We compare the prediction accuracy of our model with
other energy prediction models proposed in the literature,
in particular the ones that were used in a Energy Predictor
Shootout competition.

A. Prediction Accuracies on the Benchmark data set: Great
Energy Predictor Shootout (EPS) data set 1992

The EPS data set is used as a benchmark data set for
comparing efficiency of algorithms in predicting energy con-
sumption. The data set was initially presented as a part of
the first ASHRAE competition on building data analysis in
1992. There are eight variables, recorded over a period of 4
months (Sept-Dec) at 1 hour intervals. Four of the variables
are related to the weather: Outside Air Temperature in oF ,
Outside Air Humidity Ratio (wt of water/wt of dry air), solar
insolation (irradiance) (watts/ m2) and Wind Speed (in m.p.h).
Machine learning methods were employed to learn regression
models from the first four months of data, and then used
to predict the three energy variables: chilled water energy
(CHW), hot water energy (HW) and whole building electricity
consumption (WBE) as a function of the environment variables
for the next two months.

In this paper, we compare the prediction accuracy using the
Coefficient of Variation Root Mean Square Error (CVRMSE)
metric:

CVRMSE =

√∑n
i=1(yi−ŷi)2

n

ȳ
(10)

As discussed in section IV we clustered the data to enable
the derived energy models to be a function of different
environmental modes. The data grouped into clusters that
indicated the time of day.

We trained the AdaBoost algorithm on the training data
from each cluster using a 10-fold cross validation approach.
During the testing phase, the two month data was assigned to
the respective clusters and the Heating, Cooling and Whole



TABLE I
RESULTS OF ENERGY PREDICTION ON THE EPS DATA SET FOR 2 MONTHS

Method WBE CHW HW Average
CVRMSE CVRMSE CVRMSE CVRMSE

Team#9* 10.36* 13.02* 15.24* 15.24*
HC+AdaBoost 13.22 10.21 24.24 15.89

HC+RF 13.72 10.08 24.65 16.15
RF* 11.72* 14.88* 28.13* 18.24*
KR 13.61 12.40 33.01 19.67

Team#6* 11.78* 12.97* 30.63* 18.46*
Team#3* 12.79* 12.78* 30.98* 18.85*
Team#2* 11.89* 13.69* 31.65* 19.08*
Team#7* 13.81* 13.63* 30.57* 19.34*
HC+SVR 19.09 11.84 30.23 20.39

HC:Hierarchical Clustering. RF:Random Forests.
KR:Kernel Regression, reproduced from [15] *:reproduced from [16].

Building Electricity energy estimates were computed. To es-
tablish the effectiveness of clustering in improving prediction,
we applied a similar method to predict energy consump-
tion using Support Vector Regression and Random Forests.
The results were compared with the prediction accuracies
of top teams that participated in the ASHRAE competition,
the Random Forests approach employed by [16], and the
Kernel Regression technique used in [15]. The results are
shown in Table I. Our Random Forest and AdaBoost methods
generated prediction accuracies that were better than most
of the methods. The CVRMSE was better by 2 to 3% than
the teams placed 2nd through 5th. The SVR method did not
perform well probably because of the skewness in the weather
data.

B. Prediction Accuracies on the Alumni Hall data set

In order to see the prediction capabilities of the Hierar-
chical Clustering based AdaBoost, Support Vector Regression
and Random Forests for a second scenario, we applied our
algorithms to predict the Heating and Cooling energies of
the Vanderbilt Alumni Hall data set. The data was collected
for 1 year from October 2016 to September 2017 at 1 hour
intervals. However, due to missing data in the Hot Water
energy consumption (in BTUs) we used fewer points where
all the variables were simultaneously logged. There were
two variables for energy prediction: Chilled Water energy
consumption (in BTUs) associated with the chilled water line
circulating through out the building, acting as a heat sink and
the Hot Water/Steam energy consumption, which is the heat
source within the building. There were 3 input variables: the
Outside Air Temperature, the Outside Air Relative Humidity
and the Solar Insolation. The AHU discharge temperature was
the control variable.

As described earlier, as a first step, we clustered the data.
Table II shows that the time of the day as well as season
explains the clusters formed. [15] maps the time of the day to a
unit circle to explain the periodicity in energy values and used
a kernel regression method to predict energy consumption. We
did not use the time variables in our prediction algorithm.

The CVRMSE metric was used to calculate the error in
prediction for each of the three methods: AdaBoost, Random
Forests and SVR with and without Hierarchical Clustering.
During training under a clustered approach, the 12 month test
data was grouped into 6 clusters. The data in each cluster was
split into two: 75% training and 25% testing. The training
involved a 10-fold cross validation. A problem we faced was
that the energy function for cluster 3 could not be learned
because of the large irregular variation in the data.

As a comparison, to show the effectiveness of the clustering,
we used the entire data to learn the energy function, again
using 75% of the data for training and 25% for testing. A
similar 10-fold cross validation was used to train on the entire
train data set in this case.

We tested our regression models and the results are reported
in Table III. We ran the above experiment for each method 10
times to get an estimate of the average CVRMSE . We noticed
that there is a significant decrease in the CVRMSE error value
when we use the clustered approach. This is also supported by
performing an unpaired t-test on the corresponding methods
where we compare the CVRMSE for 10 samples, one under a
clustered approach and one without clustering. The p−value
was found to be very low (p = 0.001) for all the three
regression methods supporting the hypothesis that grouping
the data by environmental conditions improves accuracy.

Given the strong nonlinearities in the data, AdaBoost, which
uses an ensemble of models performs a little better than
the Random Forests. This is mostly because some of the
scenarios in Alumni Hall show sensor readings where the
building conditions are such that because of energy transfer
between different sections of the building, the net heating and
cooling energy consumption within the building become 0.
Sometimes, this scenario occurred multiple times during a
day. Another situation is frequently encountered during the
late spring and early fall when the outside Relative Humidity
remains in a pleasant range during the day. But at night as
temperature of the air drops significantly, the capacity of the
air to hold moisture decreases and Relative Humidity sensors
record a high value immediately causing the Air Handling
Unit to switch to climate control mode. This causes both the
cooling and heating energy consumption to rise temporarily.
In typical building scenarios, the AHUs are mainly guided by
temperature requirements but in our system in Alumni Hall
the AHU is guided by humidity. Therefore, as stated, there
are situations where there were sudden spikes in AHU energy
consumption. These are examples of scenarios that are hard
to accommodate in a single energy consumption prediction
model, but AdaBoost can use a sequence of separate regressors
to learn them in a more accurate manner.

We also notice that the accuracies compared to those in the
EPS data is lower. There could be several reasons for this. For
one, there are other variables, such as thermostat settings that
affect energy consumption. We did not have access to the data.
Second, the mode of operation for the building was frequently
changing based on the controller settings whose schedule was
not known to us.



TABLE II
MEAN STATISTICS OF THE CLUSTER CENTERS FOR ALUMNI HALL DATA

Cluster Outside Air Outside Air Direct
Temperature Relative Irradiance

(F) Humidity(%) ( W
m2 )

High Temp
Med RH 72.9 59.2 321
(Sunny (11.8) (19.5) (79.8)

& Summer)
High Temp

Low RH 79.9 38.3 77.6
(Aft & Eve (8.4) (10.5) (77.6)
&Summer )
High Temp

Med RH 69.4 61.4 49
(Whole Day (7.2) (11.5) (61.9)

&Whole Year)
Low Temp
Low RH 42.4 43.6 45

(Whole Day (10.9) (13.5) (72.3)
& Winter)
Med Temp
High RH 64.4 91.5 18

(Eve&Night (7.4) (6.7) (40.1)
&Summer&Winter )

Low Temp
High RH 64.4 91.5 18

(Whole Day (7.4) (6.72) (40.1)
&Mostly Winter )

TABLE III
RESULTS OF ENERGY PREDICTION ON THE ALUMNI HALL DATA SET

AVERAGED OVER 10 RUNS

Method CHW HW Average
CVRMSE CVRMSE CVRMSE

(std) (std) (std)
HC+AdaBoost 22.14 (0.61) 34.79 (0.53) 28.47 (0.57)

HC+Random Forests 28.59 (0.91) 32.88 (0.24) 30.73 (0.57)
HC+SVR 38.01 (0.86) 42.14 (0.92) 40.08 (0.80)
AdaBoost 27.71 (1.15) 43.76 (1.69) 35.74 (1.42)

Random Forests 36.26 (2.01) 43.61 (1.21) 39.93 (1.61)
SVR 54.34 (1.79) 71.1 (4.19) 62.73 (2.99)

HC:Hierarchical Clustering.
SVR:Support Vector Regression.

C. Optimizing Energy Consumption using the model

In this part of the study, we used the Hierarchical Clustering
based AdaBoost algorithm since it produced more accurate
predictions for the Alumni Hall data set. As we recall from
section V-B, one of the inputs to the model was the Tem-
perature set point of the AHU system. We should emphasize
here that a better control problem could have been solved if
we could access the individual thermostat set points within
the rooms. We used the set of control variables that were
accessible to us, but our approach can be easily extended
to situations where multiple control variables are present.
To derive the optimal energy consumption for a given set
of environmental conditions, we ran the Stochastic Gradient
Descent algorithm.

Our implementation of the optimization algorithm pro-
gresses as follows: We note the current values of the four
input variables: the outside air temperature, the outside air

TABLE IV
PROGRESS OF OPTIMIZATION ON THE TOTAL COST FUNCTION

relative humidity, solar insolation value and Air Handling Unit
discharge temperature set point. We assign this input to the
cluster whose center this data point is closest to. Once we
decide the cluster, we consider the summation of the functional
form of the heating and cooling load models as a single
cost function: the input to each model are the three input
variables and the cost is sum of the energy consumed by the
chilled water and hot water systems. These current input values
and the control variable are used to initialize the Stochastic
Gradient Descent Algorithm. We allowed the temperature set
point to vary only by ±2oF around the current set point
value for the reasons of accuracy, as discussed earlier. We also
allowed the other three environmental variables to vary by a
small range of ±1oF for outside air temperature, ±2% for
outside air relative humidity and ±10 W

m2 for incoming solar
insolation. This allows Stochastic Gradient Descent to explore
the search space in a more effective manner. The stochastic
gradient algorithm traverses the search space such that the sum
of the hot water energy consumption and cold water energy
consumption is minimized. The discharge temperature corre-
sponding to the smallest total energy point is then reported as
the output of the optimization algorithm.



TABLE V
ENERGY SAVINGS IN EACH CLUSTER AVERAGED OVER 20 RUNS

Cluster Average Percentage Savings (Standard Deviation)
Cluster 1 11.59 (0.45%)
Cluster 2 14.53 (0.55%)
Cluster 4 12.92 (0.36%)
Cluster 5 10.25 (0.21%)
Cluster 6 12.35 (1.12%)

The results of applying the Stochastic Gradient Descent
to each of the clusters are shown in Table IV for a set of
test cases. The Y-axis shows the scaled values of the energy
consumption in BTU since the models were trained on nor-
malized data. The X-axis shows the number of iterations over
which the algorithm ran. Iteration 0 shows the total Chilled
Water and Hot Water energy consumption under the current
environmental conditions, while the end of iteration shows
the total Chilled Water and Hot Water energy consumption
after SGD has found an new optimal point for the discharge
temperature value. The percentage energy savings in each
cluster averaged over 10 different initializations is shown Table
V. We see that on average the savings is about 12%.

VI. SUMMARY AND CONCLUSIONS

This paper has successfully applied a data driven approach
to modeling and subsequently optimizing the energy consump-
tion in large buildings, where energy flow models are not
available, and would be very expensive to develop. Machine
learning based models like AdaBoost, Random Forests and
Support Vector Regression are applied to energy and environ-
mental data available for buildings to predict the total energy
consumption for the building. These models are then treated as
an energy cost function with certain control variables as inputs
to the function. An optimizing algorithm: Stochastic Gradient
Descent is used to obtain a setting for the control variable at
which the energy cost is minimum. The new values of the
control variables are then recommended as the set points for
the HVAC subsystems.

When compared again a standard data set, our approach
produces better results compared to other algorithms discussed
in the literature. When used with a Vanderbilt building data
set, our algorithm predicts a 12% decrease in energy con-
sumption over the current control algorithms that are applied.
In future work, we will work to incorporate additional energy
related features to further improve the accuracy of prediction
modeling and improve the energy savings that our approach
provides. We will also extend our approach to combine model
and data driven methods for more real time monitoring of
building energy consumption.
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